Airflow is a platform to programmatically author, schedule and monitor workflows.
Airflow is built on following principles:
Scalable
Dynamic
Extensible
Elegant
Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.
Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment.
Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine.
Apache Airflow provides following features:
Pure Python
Useful UI
Robust Integrations
Easy to Use
Open Source
No more command-line or XML black-magic! Use standard Python features to create your workflows, including date time formats for scheduling and loops to dynamically generate tasks. This allows you to maintain full flexibility when building your workflows.
Monitor, schedule and manage your workflows via a robust and modern web application. No need to learn old, cron-like interfaces. You always have full insight into the status and logs of completed and ongoing tasks.
Airflow provides many plug-and-play operators that are ready to execute your tasks on Google Cloud Platform, Amazon Web Services, Microsoft Azure and many other third-party services. This makes Airflow easy to apply to current infrastructure and extend to next-gen technologies.
Anyone with Python knowledge can deploy a workflow. Apache Airflow does not limit the scope of your pipelines; you can use it to build ML models, transfer data, manage your infrastructure, and more.
Wherever you want to share your improvement you can do this by opening a PR. It’s simple as that, no barriers, no prolonged procedures. Airflow has many active users who willingly share their experiences. Have any questions? Check out our buzzing slack.
Airflow supports following main integrations:
Apache Sqoop
Google Cloud Pub/Sub
Amazon CloudWatch Logs
Google Kubernetes Engine
Google Machine learning
Amazon Athena
Airflow has providers packages include integrations with third party integrations. They are updated independently of the Apache Airflow core. Some of these are:
Airbyte
Amazon
Apache Beam
Apache Cassandra
JIRA
Airflow has an official Dockerfile and Docker image published in DockerHub as a convenience package for installation. You can extend and customize the image according to your requirements and use it in your own deployments.
Refer official documents on Apache Airflow here:
Airflow Documentation: https://airflow.apache.org/docs/
Airflow Usecases: https://airflow.apache.org/use-cases/